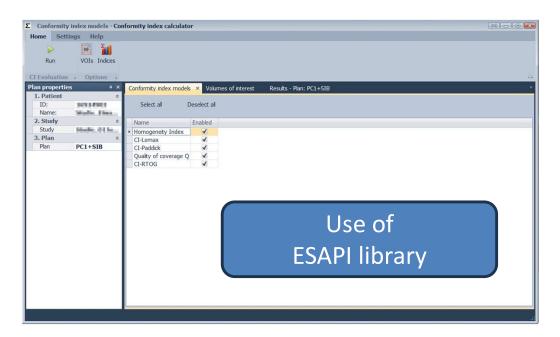


Eclipse Scripting in Focus: Applications in Radiation Oncology

Dr.-Ing. Ilias Sachpazidis 25.05.2024

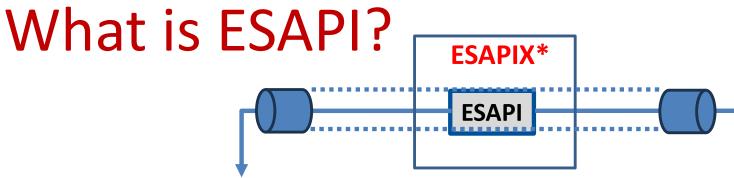
Med. Physik Abteilung, Straheilkunde, Universität Freiburg


Outline

- What is Eclipse Scripting?
- ESAPI Features / Functionalities
- In-house applications for Med. Physics / Radiation Oncology
- Elements on best practises for code development
- Conclusion

What is Eclipse Scripting?

- Software application
- ESAPI => Eclipse Scripting Application
 Programming Interface



What is ESAPI?

- Collection of .NET (software development framework by Microsoft) libraries
- Enables developers to build .NET scripts, DLLs, or application with .NET enabled languages (C#, Visual Basic, C++, F#)
- Operates on patient data loaded into Eclipse and/or all patients available in Eclipse database (ARIA DB)


```
⊡using System;
 using System.Linq;
 using System.Text;
 using System.Windows;
 using System.Collections.Generic;
 using VMS.TPS.Common.Model.API;
 using VMS.TPS.Common.Model.Types;
                                          Your Script / App
    public class Script
        public Script()
        public void Execute(ScriptContext context /*, System.Windows.Window window*/)
           Patient patient = context.Patient;
            if (context.PlanSetup == null)
               MessageBox.Show("Please load a patient plan before the calculation.", "Volume Calculation."
            if (!context.PlanSetup.IsDoseValid)
               MessageBox.Show("This plan has no dose calculated, Please load plan with 3D dose."
           var listStructures = context.StructureSet.Structures;
           Structure ptv = listStructures.Where(x => !x.IsEmpty && x.Id.ToUpper().Contains("PTV")
               MessageBox.Show("PTV is empty or not created for this plan.");
            double d95PTV = context.PlanSetup.GetDoseAtVolume(ptv, 95, VolumePresentation.Relative
```

(*) https://github.com/rexcardan/ESAPIX

VARIAN ecosystem - APIs

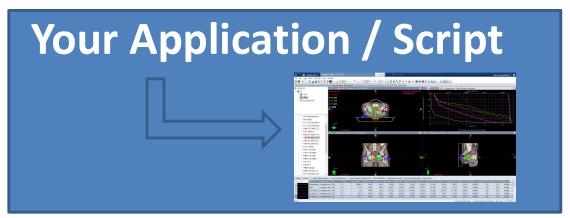
- Image Registration and Segmentation Scripting API
 - structures and structure sets
 - rigid and non-rigid registrations
- ARIA Portal Dosimetry Scripting API
 - portal dose images, predicted dose images and composite images
 - portal Dosimetry Analysis, including tests and gamma analysis
 - portal Dosimetry analysis templates
- Eclipse Scripting API
- => Microsoft .NET Framework library v4.6.2 (ESAPI 15.6)

ESAPI v15.5 (or newer)

- ESAPI Access (read) to External Beam Planning Information: Patient, Course, Plan, Beams, Structures, DVHs, Doses, Images, Imaging Registration
- Access (read) to Eclipse Brachytherapy and Proton Data
- Eclipse Automation for External Beam
 Planning (read/write): Create Courses, Plans,
 Beams, Optimization, Dose calculation

ESAPI: Plan data model V Dose Class → ApiDataObject ¥ V ¥ (*) Patient **PlanningItem PlanningItemDose** BeamDose T Dose Class Class Class Class → ApiDataObject → Dose → ApiDataObject → Dose T Dose ¥ Fractionation " UniqueFractionation Class → ApiDataObject (*) PlanSetups PlanSum PlanSetup PlanSums Class Class StructureSet StructureSet ¥ → PlanningItem → PlanningItem Class → ApiDataObject PlanSetups Courses Beams (*) (*) Course Beam Class Class → ApiDataObject → ApiDataObject DVHEstimates (*) **EstimatedDVH** Class ExternalPlanSetup 👻 BrachyPlanSetup → ApiDataObject Class Class → PlanSetup → PlanSetup

Source: Eclipse Scripting API Reference Guide, VARIAN



Scripting running modes

Plugin Script

Standalone Application

General ESAPI Applications

- Contouring of help structures
 - Boolean operations,
 - a/symmetric margins
- Treatment planning
 - Automatic plan generation and optimization
 - Creation and calculation of verification plans
 - DVH-Analyser Documentation (Standard Treatment Plan Report, Dose Metric Report)
- Data extraction
 - Patient filtering with specific plan parameters
 - Extraction of DVH, structure 3D meshes, plan parameters, etc...

In-house ESAPI applications

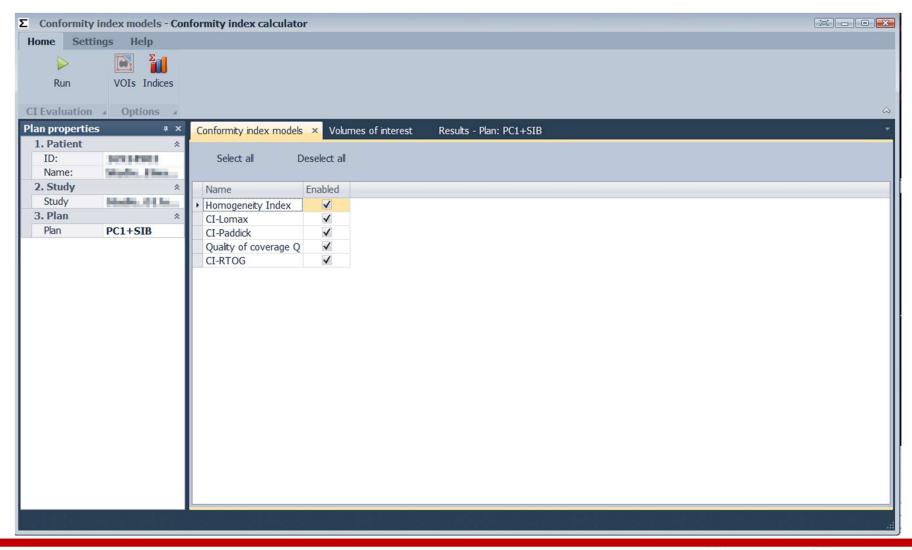
R&D:

- Export of 3D meshes of structures => Radiomics
- Exporting Dose-Volume indices (Dxx, Vxx) for single and summation plans => DVHs in EQD2
- Plan Optimization / Prescription free optimization
- Monte carlo simulation => EGS dose => Eclipse import Clinical:
- Conformity Index Calculator
- Dosimetric Plan Evaluation
- Plan Dose Control (Secondary Independent Dose Verification)

Dose-Volume Indices - Input

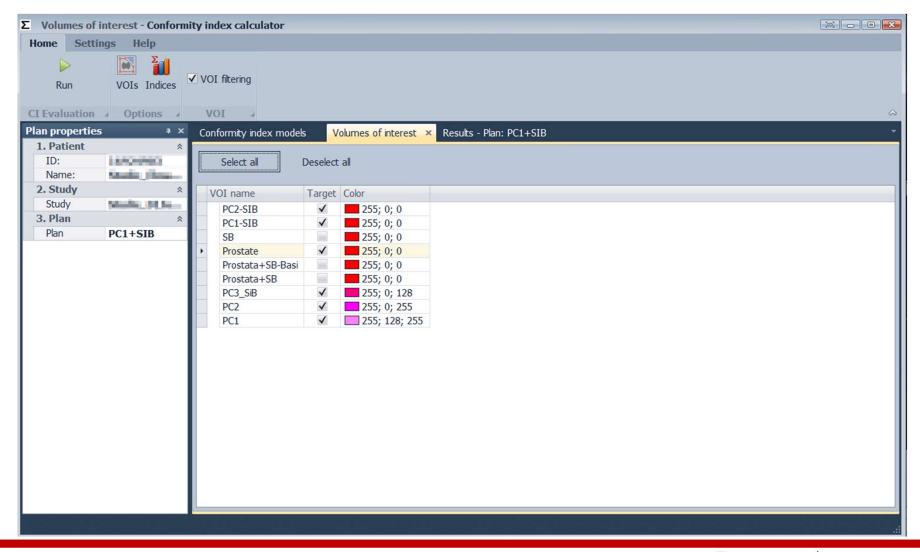
DVH_data_collection.csv

1	Α	Course		C	D	E	Ë.	G
1	PIZ			Plan	StructureClass	Structure	DoseMetrics	VolumeMetrics
2		Scha ' ' ***	17	+rGBM_PET	GTV_PET	GTV_PET	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	Volume[cc]
3		Scha	17	+rGBM_PET	GTV_MRT	GTV_MRT	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	Volume[cc]
4		Scha	17	+rGBM_PET	PTV_MRT	rGBM_MRT	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	V95%[%], V90%[%], V
5		Scha	17	+rGBM_PET	PTV_PET	rGBM_PET	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	V95%[%], V90%[%], V
6		Scha	17	+rGBM_PET	Optic Chiasm	Chiasm	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	Volume[cc]
7		Scha	17	+rGBM_PET	Right optic nerve	Optic Nerve, Rig	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	Volume[cc]
8		Scha	17	+rGBM_PET	Left optic nerve	Optic Nerve, Lef	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	Volume[cc]
9		Scha	17	+rGBM_PET	Brainstem	Brainstem	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	Volume[cc]
10		Scha	17	+rGBM_PET	Left Retina	Left Retina	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	Volume[cc]
11		Scha	17	+rGBM_PET	Right Retina	Right Retina	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	Volume[cc]
12		Scha	r18	+rGBM-PET	GTV_PET	GTV-PET	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	Volume[cc]
13		Scha	r18	+rGBM-PET	GTV_MRT	GTV-MRT	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	Volume[cc]
14		Scha	r18	+rGBM-PET	PTV_MRT	rGBM-MRT	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	V95%[%], V90%[%], V
15		Scha	r18	+rGBM-PET	PTV_PET	rGBM-PET	Min[Gy], Max[Gy], Mean[Gy], D50%[Gy], D50%[EQD2Gy(8.0)]	V95%[%], V90%[%], V
16		Scha	r18	+rGBM-PFT	Optic Chiasm	Chiasm	Min[Gv], Max[Gv], Mean[Gv], D50%[Gv], D50%[FOD2Gv(8.0)]	Volume[cc]

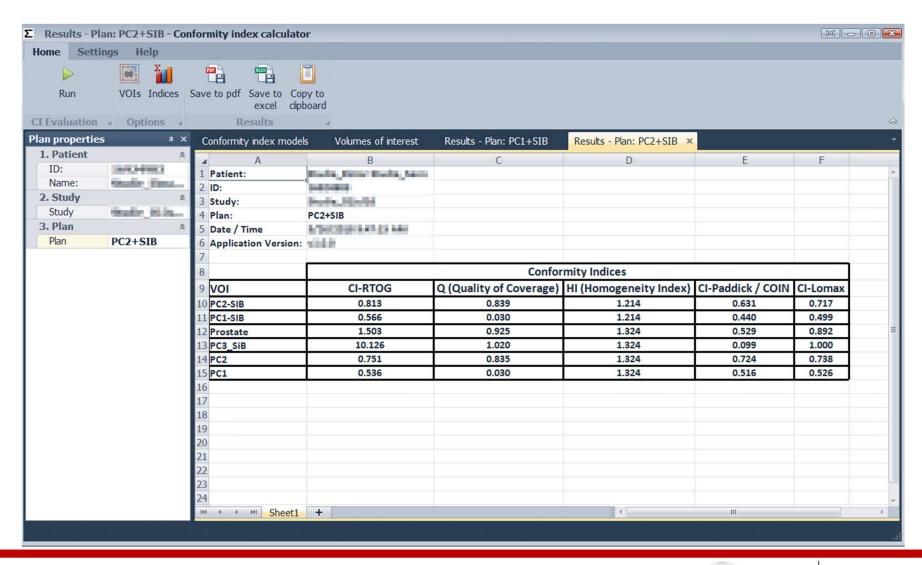


Dose-Volume Indices - Output

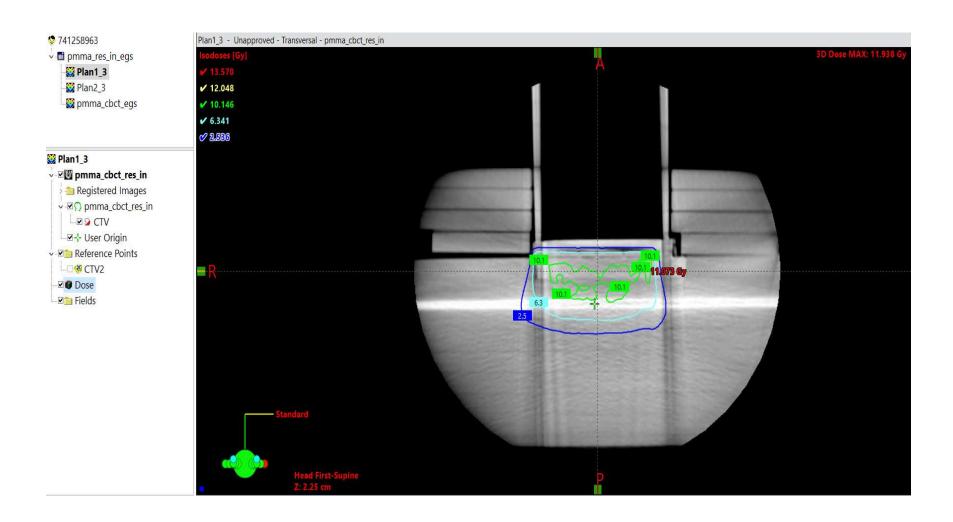
Α	В	C	D	E	F	G	Н
Piz	Course	Plan	GTV_PET_Min[Gy]	GTV_PET_Max[Gy]	GTV_PET_Mean[Gy]	GTV_PET_Volume[cc]	GTV_MRT_N
		+rGBM_PET	36.924	40.083	38.989	2.7938	
		+rGBM-PET	37.272	41.216	38.742	17.2615	
		Sum_14Aug19	21.882	40.808	39.132	36.016	
		+rGBM-PET	27.894	41.672	39.738	44.7287	
		+rGBM_PET	36.796	41.226	38.764	16.0789	
		+rGBM-MRT	34.546	41.974	39.272	12.5642	
		+rGBM-PET	37	40.918	39.509	23.7267	
		+rGBM-PET	38.108	40.899	39,915	5.4064	
		+rGBM-PET	38.788	40.795	40.181	1.342	
		+rGBM-MRT	24.253	40.953	38.893	28.8776	
		+rGBM-PET	38.237	40.589	39.695	0.5748	
		+rGBM-MRT	14.173	41.6	39.08	21.0325	
		+rGBM-MRT	26.424	41.343	39.581	16.2244	
		+rGBM-PET	38.395	41.184	39.897	6.6692	
		+rGBM-MRT	17.274	41.24	39.499	17.0338	
		+rGBM_MRT mod	39.582	40.409	40.088	0.2687	
		:Sum_29Jun20 v1	39.063	40.906	39.895	4.5564	
		+rGBM-MRT	9.621	40.78	34.548	9.7951	
-	and the last	+rGBM-PETmod2	18.581	42.026	39.082	2.3765	



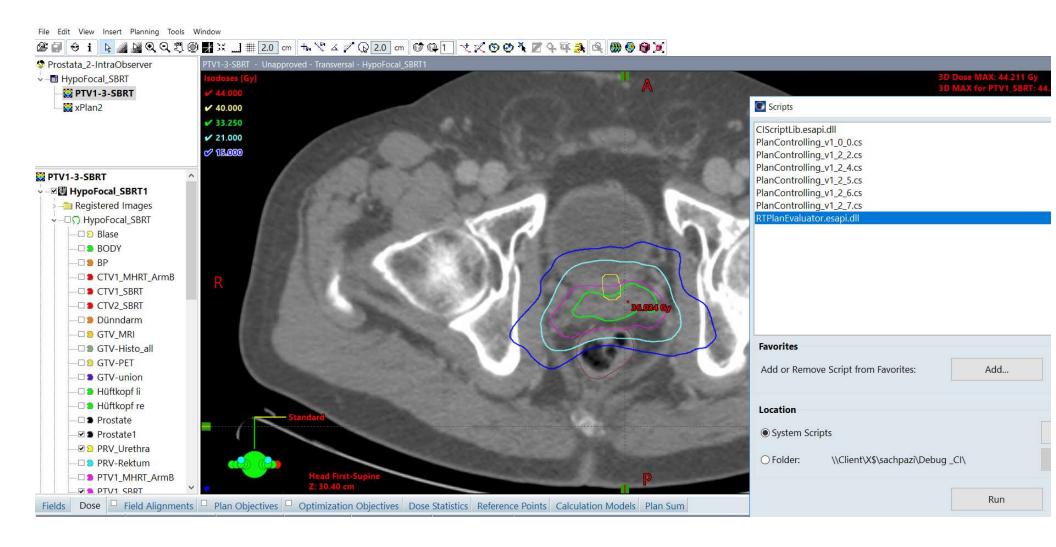
Conformity Index Calculator

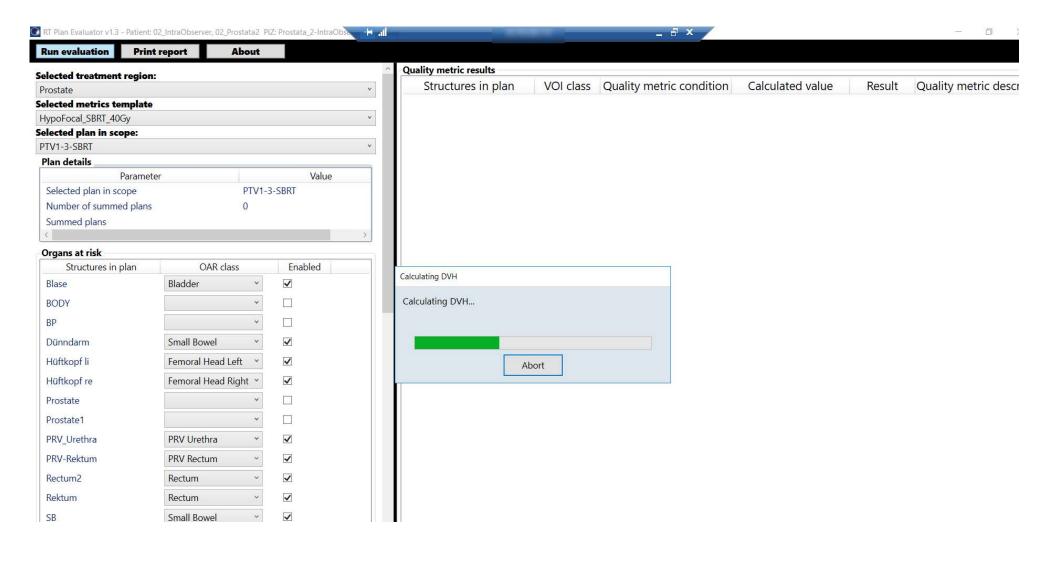

Conformity Index Calculator

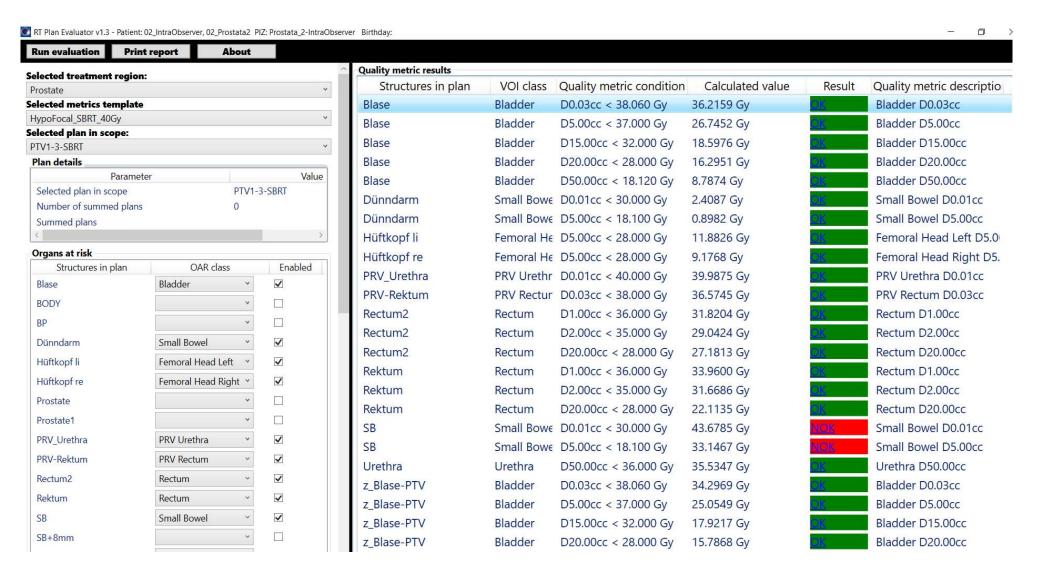
Conformity Index Calculator

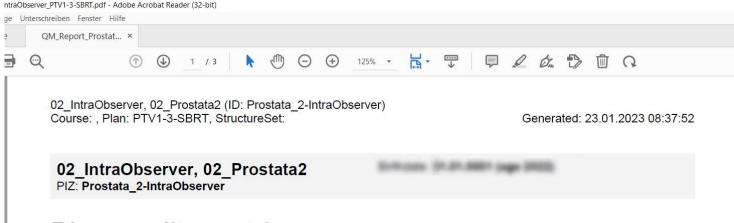


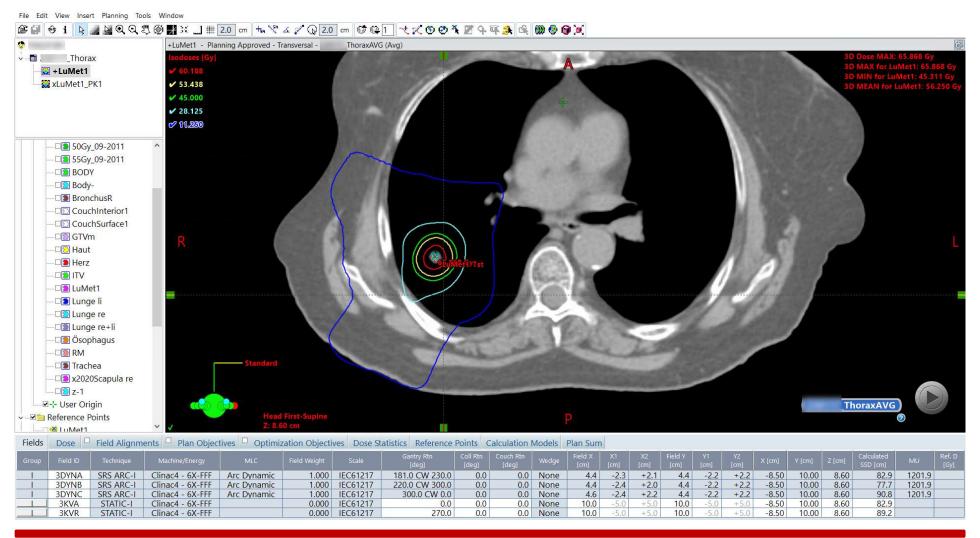
EGS Dose Import


B Egslmport v	1.0 - Import .3ddose into Eclipse	<u> </u>	×
Patient : PIZ : Course : Plan :	pmma_res_in_egs Plan1_3		
Select file	•		
C:\Users\ssa	chpazi.ONCOLOGY\Desktop\new_EGS_import_files\PMMA_CBCT_1.3ddose		
	pmma_cbct_res_in votion Plan Name : Plan1_3 parameters		
	nonitor unit : 0.01		
Normali	zation Factor (Gy/Particle) : 1.95E-12		
	Start importing		
For research	purposes only! Contact info: ilias.sachpazidis@uniklinik-freiburg.de		

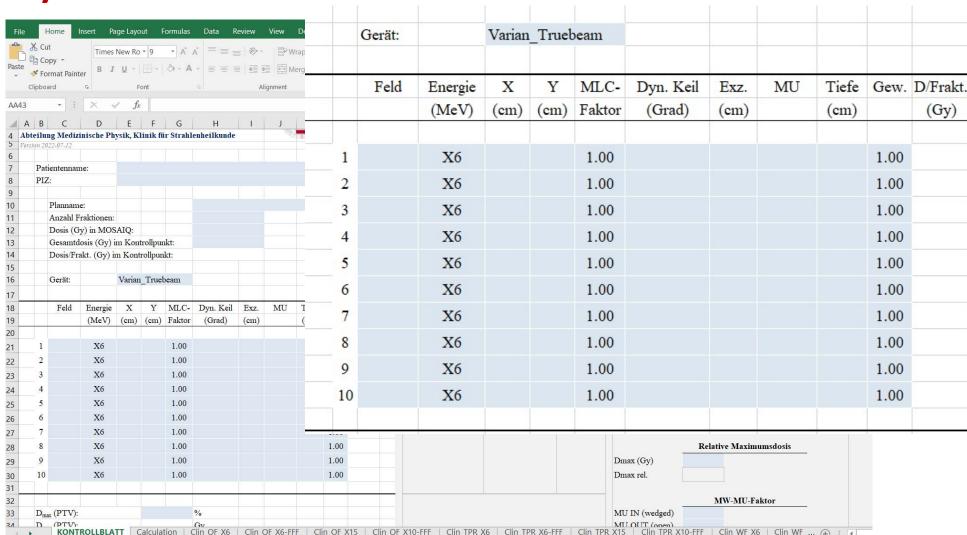

EGS Dose Import

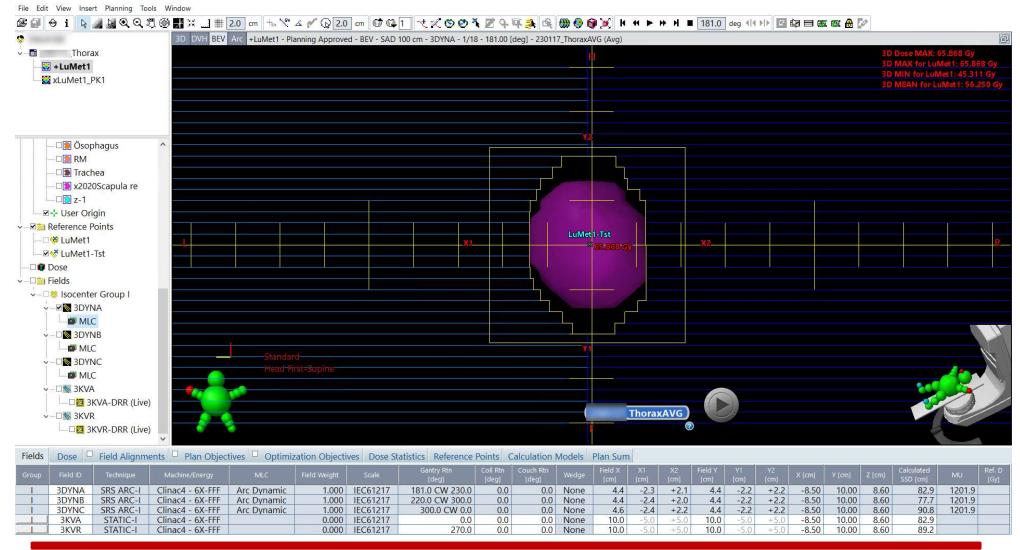


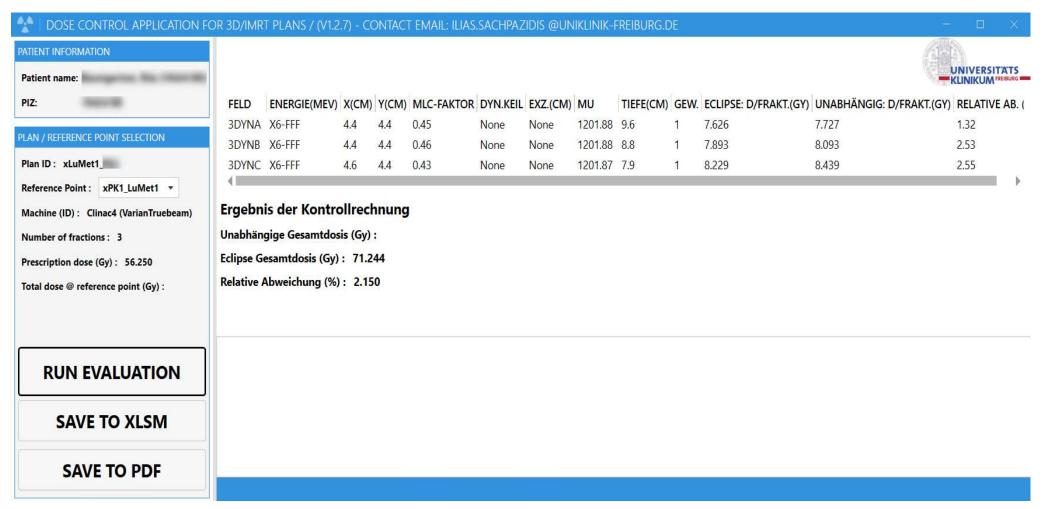




Plan quality metrics


Metric template: HypoFocal_SBRT_40Gy									
Structures in plan	VOI class	QM condition	Calculated value	Result	QM description				
Blase	Bladder	D0.03cc < 38.060 Gy	36.2159 Gy	OK	Bladder D0.03cc				
Blase	Bladder	D5.00cc < 37.000 Gy	26.7452 Gy	ок	Bladder D5.00cc				
Blase	Bladder	D15.00cc < 32.000 Gy	18.5976 Gy	ОК	Bladder D15.00cc				
Blase	Bladder	D20.00cc < 28.000 Gy	16.2951 Gy	ОК	Bladder D20.00cc				
Blase	Bladder	D50.00cc < 18.120 Gy	8.7874 Gy	ок	Bladder D50.00cc				
Dünndarm	Small Bowel	D0.01cc < 30.000 Gy	2.4087 Gy	ок	Small Bowel D0.01cc				





Independent Dose Control: 3D and

Dynamic Arcs Plans

	Gerät:		Varian	_Truel	eam						
	Feld	Energie	X	Y	MLC-	Dyn. Keil	Exz.	MU	Tiefe	Gew.	D/Frakt.
		(MeV)	(cm)	(cm)	Faktor	(Grad)	(cm)		(cm)		(Gy)
,	202014	W. EEE		4.4	0.45			1201.0	0.6	1.00	7 707
	3DYNA		4.4	4.4	0.45			1201.9	9.6	1.00	7.727
	3DYNB		4.4	4.4	0.46			1201.9	8.8	1.00	8.093
3	3DYNC	X6-FFF	4.6	4.4	0.43			1201.9	7.9	1.00	8.440
4		X6			1.00					1.00	
5		X6			1.00					1.00	
6		X6			1.00					1.00	
7		X6			1.00					1.00	
8		X6			1.00					1.00	
9		X6			1.00					1.00	
10		X6			1.00					1.00	
D	ax (PTV):			12	27.1	%					
	ax (PTV):				.51	Gy					
	x/Fraktion	(PTV):			.84	Gy					
Erg	ebnis der	Kontrollre	chnung	:							
	Dosis pro	Fraktion:				24.26	Gy	Date	ım:		23.01.202
	Relative A	Abweichu	ng:			2.2	%	Med	l. Physi	k:	
Ko	mmentar/1	Notiz:									
	Kontrollp	unkt: xPK	1_LuM	let1, S	oftware	Version: 1.2.	.7				

Dosiskontrolle für 3D-Pläne

UNIVERSITÄTS

KLINIKUM FREIBURG

Abteilung Medizinische Physik, Klinik für Strahlenheilkunde Vorzion 2023-07-12

Patientenname: PIZ:

> Planname: Anzahl Fraktionen: Dosis (Gy) in MOSAIQ: Gesamtdosis (Gy) im Kontrollpunkt: Dosis/Frakt (Gy) im Kontrollpunkt:

(Gy) im Kontrollpunkt: 71.244 (Gy) im Kontrollpunkt: 23.748

Gerät Varian_Truebeam

	Feld	Energie (MeV)	X (cm)		MLC- Faktor	Dyn. Keil (Grad)	Exz (cm)	MU	Tiefe (cm)	Gew.	D/Frakt (Gy)
1	3DYNA	X6-FFF	4.4	4.4	0.45			1201.9	9.6	1.00	7.727
2	3DYNB	X6-FFF	4.4	4.4	0.46			1201.9	8.8	1.00	8.093
3	3DYNC	X6-FFF	4.6	4.4	0.43			1201.9	7.9	1.00	8.440
4		X6			1.00					1.00	
5		X6			1.00					1.00	
6		X6			1.00					1.00	
7		X6			1.00					1.00	
8		X6			1.00					1.00	
9		X6			1.00					1.00	
10		X6			1.00					1.00	

xLuMet1 PK1

56.250

 D_{max} (PTV):
 127.1
 %

 D_{max} (PTV):
 71.51
 Gy

 D_{max} (Fraktion (PTV):
 23.84
 Gy

Ergebnis der Kontrollrechnung:

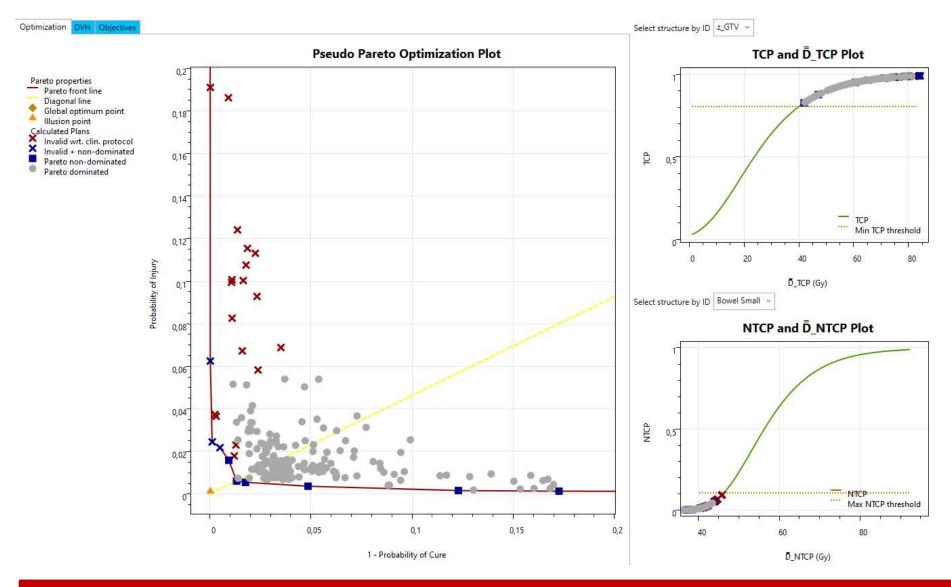
 Dosis pro Fraktion:
 24.26
 Gy
 Datum:
 23.01.2023

 Relative Abweichung:
 2.2
 %
 Med. Physik:

Kommentar/Notiz

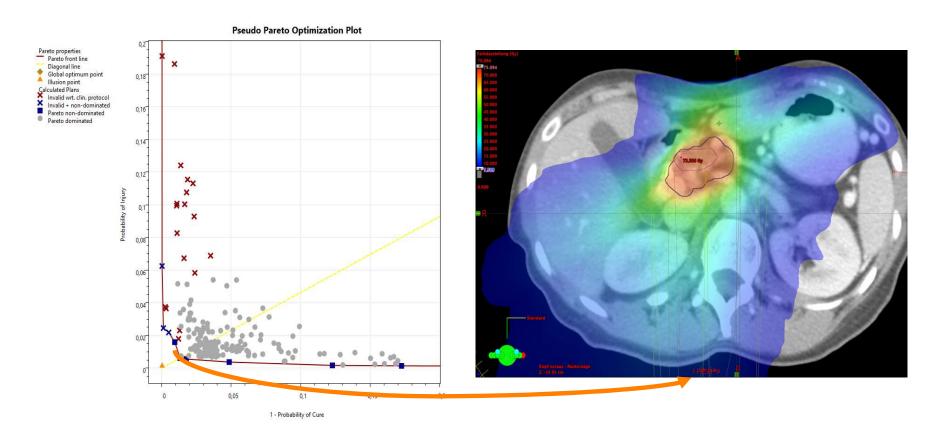
Kontrollpunkt: xPK1_LuMet1, Software Version: 1.2.7

- Ca. 5-10 Plans / Day
- Before (manual):


```
(5 to 10) * 10 min = 50 to 100 min (average. 1 h)
```

After (in automated way):

```
10 * 1 min = 10 min
```



Prescription free plan optimization

Prescription free plan optimization

Course x20230120pp1, Plan Setup 152

Best practises for code development

- Clean and Concise Code:
 - Principles: DRY, KISS, SOLID
 - Object oriented programming (OOP), functional programming
- Meaningful Variable and Function Names
- Consistent Coding Style
- Version Control (e.g. Gitlab)
- Testing and Test-Driven Development (TDD)
- NOT comment your code, just produce clean code

Conclusion

- ESAPI empowers us with access to planning information, including patient data, treatment courses, plan parameters, and imaging modalities.
- Automations minimize errors, increase efficiency, and improve quality.
- The learning curve is steep
- Improving your programming skills requires patience and dedicated effort to achieve a high level of proficiency.

Thank you for your attention

Email: ilias.sachpazidis@uniklinik-freiburg.de

