AI-assisted Al-assisted
target volume definition
in radiation therapy Al-assisted
target volume definition
in radiation therapy

PD Dr. med. habil. Florian Putz

Agenda: Al-assisted Target Volume De
Al-assisted target volume definition in rad
1) Deep learning tumor auto-segmentat
2) Automated CTV creation
3) Al-interactive target volume creation

- Agenda: Al-assisted Target Volume Definition
Al-assisted target volume definition in radiation therapy? A*genda: AI-assisted Target Volume Definition*
AI-assisted target volume definition in radiation therapy?
1) Deep learning tumor auto-segmentation **Agenda: Al-assisted Target Volume Definition
Al-assisted target volume definition in radiation therapy?**
1) Deep learning tumor auto-segmentation
2) Automated CTV creation
-
-
-
- Al-assisted target volume definition in radiati
1) Deep learning tumor auto-segmentatior
2) Automated CTV creation
3) Al-interactive target volume creation
4) Tumor growth &
tumor infiltration prediction assisted target volume definition in radiation
Deep learning tumor auto-segmentation
Automated CTV creation
Al-interactive target volume creation
Tumor growth &
tumor infiltration prediction

SENSEE BRAINLES 2020, NATURE METHODS 2020, MENZE TMI 20
 Deep learning brain tumor auto-segmentation:

• 3D U-Nets demonstrate high accuracy for automatic

tumor segmentation in multimodal 3D imaging data. SENSEE BRAINLES 2020, NATURE METHODS 2020, MENZE TMI 2014, BERKLEY MEDPHYS 2023

1) Deep learning brain tumor auto-segmentation:

• 3D U-Nets demonstrate high accuracy for automatic ISENSEE BRAINLES 2020, NATURE METHODS 2020, MENZE TMI 2014, BERKLEY MEDPHYS 2023

Sanding tumber and the Septement of Septementation:

Sain tumber auto-segmentation:

- tumor segmentation in multimodal 3D imaging data.
- (e.g., necrosis, edema, contrast-enhancing tumor)
- Accuracy within the range of inter-expert variability (Menze 2014)
-

MEDICAL PHYSI The International Journal of Medical Physics Research and Practice

RESEARCH ARTICLE

Clinical capability of modern brain tumor segmentation models

Adam Berkley, Camillo Saueressig, Utkarsh Shukla, Imran Chowdhury, Anthony Munoz-Gauna, Olalekan Shehu, Ritambhara Singh **XX**, Reshma Munbodh XX
First published: 27 February 2023 | https://doi.org/10.1002/mp.16321

1) Deep learning tumor auto-segmentation

Clinical benefit of Al tumor auto-contouring as a support system:

n = 5 brain metastases, n = 3 meningiomas, n = 2 vestibular schwannomas

• Improved detection rate: 91.3% vs. LU ET AL. NEUROONCOLOGY 2022
Pintation
Hisystem: U ET AL. NEUROONCOIL

1) Deep learning tumor auto-segmentation

Clinical benefit of AI tumor auto-contouring as a support system:

n = 5 brain metastases, n = 3 meningiomas, n = 2 vestibular schwannomas

Clinical benefit of AI tumor auto-contouring as a support system:

 $n = 5$ brain metastases, $n = 3$ meningiomas, $n = 2$ vestibular schwannomas

-
- **Improved inter-expert variability:** Dice Score **0.90** vs. **0.86**
- Improved contouring accuracy: Dice Score 0.865 vs. 0.847
- **Time savings of 30.8%**

1560 **Neuro-Oncology**

23(9), 1560-1568, 2021 | doi:10.1093/neuonc/noab071 | Advance Access date 22 March 2021

Randomized multi-reader evaluation of automated detection and segmentation of brain tumors in stereotactic radiosurgery with deep neural networks

Shao-Lun Lu,^{to} Fu-Ren Xiao,[†] Jason Chia-Hsien Cheng, Wen-Chi Yang, Yueh-Hung Cheng, Yu-Cheng Chang, Jhih-Yuan Lin, Chih-Hung Liang, Jen-Tang Lu, Ya-Fang Chen, and Feng-Ming Hsu®

TV (Clinical Target Volume) autodelineat
Automated CTV creation
Anatomically-defined CTVs
Rule-based C
Rule-based C
Rule-based C
Rule-based C
Rule-based C
Rule-based C
Rule-based C **EXAMPLE THE COLUMB CONTROVIDED STATES.**
 EXAMPLE CONTROVIDED
 Example 2018 CONTROVIDED
 Example 2019 CONTROVIDED
 Example 2019 Controver Controver Controver Controver Controver Controver Controver Controver Controv Automated CTV creation 2) CTV (Clinical Target Volume) autodelineation

**utodelineation
ion**
Rule-based CTVs
e.g., glioma e.g., glioma

WEISSMANN T, […] AND PUTZ F. FRONT. ONCOL. 2023

Example: H&N-lymph node target volumes:

Example: H&N-lymph node target volumes:

Expert the target volumes:

Expert the target volumes:

Expert the target volumes:

Expert to the place the target volumes

Expert to the ta VEISSMANN T, [...] AND PUTZ F. FRONT. ONCOL. 2023

2) CTV auto-delineation: Anatomically-defined CTVs

Example: H&N-lymph node target volumes:

• NnU-net 2d/3d ensemble

-
- **2) CTV auto-delineation:** Anate

Example: H&N-lymph node target vo

 NnU-net 2d/3d ensemble

 Equivalence:

Al vs. expert target volumes • Equivalence: **CTV auto-delineation:** Anato **Anato Anato Anat** Graduvalence.

Al vs. expert target volumes

in blinded evaluation

• Accuracy of AI target volumes
- within intra-observer variability $\frac{0.00+1}{\sqrt{2}$ frontiers | F

 \Rightarrow Anatomically-defined Anatomically-defined CTVs and ne can be automated at human-comparable strategy at and at Sobastian at Bobastian $\text{B$ level using U-Nets.
 Pess distribution Pess and Poisson and Poisson Poisson and $\text{P$

TYPE Original Research
PUBLISHED 16 February 2023
DOI 10.3389/fonc.2023 1115258

level delineation provides expert-level accuracy

KRUSER TJ NEUROONCOL 2019; SHUSHARINA RADIOTHER ONCOL 2020; DANFANG PLOS ONE 2014

Guideline-based RT target volume definition in gliomas (ESTRO-EANO / RTOG-NRG)

• Principle: Tumor expansion (15 – 20 mm) but considering a KRUSER T J NEUROONCOL 2019; SHUSHARINA RADIOTHER ONCOL 2020; DANFANG PLOS ONE 2014 KRUSER TJ NEUROONCOL 2019; SHUSHARINA RADIOTHER ONCOL 2020; DANFANG PLOS ONE 2014

2) CTV auto-delineation: Rule-based CTVs

4 Guideline-based RT target volume definition in gliomas (ESTRO-EANO / RTOG-NRG)

9 Principle: Tu

Solution: Automated CTV creation with shortest path algorithms

SHUSHARINA N, [...], BORTFELD T RADIOTHER ONCOL 2020
 2) CTV auto-delineation: Rule-based CTVs

<u>Principle:</u> Calculation of distance transform (3D Map of shortest path lengths)

Automated CTV creation with "shortest path" algorithms:

- **ETV auto-delineation:** Rule-based CTVs
 Automated CTV creation with "shortest path" algorithms:

 Principle: Calculation of distance transform (3D Map of shortest path lengths)

 starting from tumor (GTV) surface

 c SHUSHARINA N, [...], BORTFELD T RADIC
 SHUSHARINA N, [...], BORTFELD T RADIC
 SHUSHARINA N, [...], BORTFELD T RADIC
 Calculation of distance transform (3D Map of shortest paratering from tumor (GTV) surface

consider **SHUSHARINA N, [...], BORTFELD T RADIOTHER**
 uto-delineation: Rule-based CTVs

TV creation with "shortest path" algorithms:

Calculation of distance transform (3D Map of shortest path I

starting from tumor (GTV) surface • Principle: Caption of CEN and CEN and CEN and CEN and CEN creation with "shortest path" algorithms:
• Principle: Calculation of distance transform (3D Map of shortest
• Prerequisite: Calculation of distance transform (3 SHUSHARINA N, [...], BORTFELD T RADIOTHER ONCOL 2020

2) **CTV auto-delineation:** Rule-based CTVs

Automated CTV creation with "shortest path" algorithms:

• Principle: Calculation of distance transform (3D Map of shortest
-

4) Tumor growth & tumor infiltration prediction
1. <u>Prediction of tumor infiltration using reaction-diffusion models:</u>
Challenge: *Inverse problem of model calibration*
for individual patients?
 $\frac{\partial \mathbf{u}}{\partial t} = \nabla \cdot (\mathbb$ **Tumor growth & tumor infiltration prediction**
Prediction of tumor infiltration using reaction-diffusion models
Challenge: *Inverse problem of model calibration*
for individual patients?
 $\frac{\partial u}{\partial t} = \nabla \cdot (\mathbb{D} \nabla u) + \rho u$ 4) Tumor growth & tumor infiltration prediction

LIPROVA ET AL. IEEE TMI 2019, METZ, EZHOV, PEEKEN, [...], WIESTLER NEURO ONCOL ADVANCES 2024

1. Prediction of tumor infiltration using reaction-diffusion models:

Lipkova et al. (2019): Early clinical evaluation (retrospe LIPKOVA ET AL. IEEE TMI 2019, METZ, EZHOV, PEEKEN, [...], WIESTLER NEURO ONCOL ADVANCES 2024
 TUMOLE ATOWET & CLIMICAL EVALUATION PREDICTION
 Prediction of tumor infiltration using reaction-diffusion models:

Lipkova e LIPKOVA ET AL. IEEE TMI 2019, METZ, EZHOV, PEEKEN, […], WIESTLER NEURO ONCOL ADVANCES 2024
| growth & tumor infiltration using reaction-diffusion models:
| on of tumor infiltration using reaction-diffusion models: 4) Tumor growth & tumor infiltration prediction

- **FRAMER (REGENT)**
 EXECUTED CALIGEE TMI 2019, MET, EZHOV, PEEKEN, [...], WIESTLER NEURO ONC
 Prediction of tumor infiltration using reaction-diffusion r
 Lipkova et al. (2019): Early clinical evaluation (retrospectiv LIPKOVA ET AL. IEEE TMI 2019, METZ, EZHOV, PEEKEN, [...], WIESTLER NEURO ONCONTINUE TO ALTER THE SPACE THE SPACE THAT IS A LATER ON THE SPACE THAT IS A LATER AND THE SPACE THAT IS A LATER ALTERNATIVE: 3D-CNN in atlas space
	- (Learn-Morph-Infer) ediction of tumor infiltration using reaction-
kova et al. (2019): Early clinical evaluation (retrosp
Model calibration: Bayesian modelling
Alternative: 3D-CNN in atlas space
(Learn-Morph-Infer)
Al-target volumes smaller
	- \bullet

PETERSEN ET AL. MICCAI 2021 4) Tumor growth & tumor infiltration prediction

- PETERSEN ET AL. MICCAI 2021
 **2. Tumor growth & tumor infiltration prediction

2. Tumor growth prediction using deep learning models ("data-driven"):
** *e.g., Continous-Time Deep Glioma Growth (Petersen, MICCAI 2021)***

 Hy ETERSEN ET AL. MICCAI 2021**
 EXERSEN ET AL. MICCAI 2021
 E.g., Continous-Time Deep Glioma Growth (Petersen, MICCAI 2021)
 Hybrid-CNN Transformer

(Neural Process variant)
- Hybrid-CNN Transformer (Neural Process variant)
- **4) Tumor growth & tumor infiltration prediction**

2. Tumor growth prediction using deep learning models ("data-driversity e.g., Continous-Time Deep Glioma Growth (Petersen, MICCAI

 Hybrid-CNN Transformer

(Neural Proces longitudinal training dataset: Variable number + timing of MRI scans, variable prediction into the future

Continuous-Time Deep Glioma Growth Models

Jens Petersen¹, Fabian Isensee², Gregor Köhler¹ Paul F. Jäger³, David $Zimmerer¹$, Ulf Neuberger⁴, Wolfgang Wick^{5,6}, Jürgen Debus^{7,8,9}, Sabine Heiland⁴, Martin Bendszus⁴, Philipp Vollmuth⁴, and Klaus H. Maier-Hein¹

Summary & Conclusions

- Deep learning auto-segmentation models can improve tumor contouring as support systems.
- Computer-automated creation of standardized clinical target volumes is also possible and promising.
- Since expert validation and correction are necessary, the question
- **Summary & Conclusions**

 Deep learning auto-segmentation models can

improve tumor contouring as support systems.

 Computer-automated creation of standardized clinical targ

volumes is also possible and promising.

 S improve tumor contouring as support systems.
Computer-automated creation of standardized clin
volumes is also possible and promising.
Since expert validation and correction are necessary,
of optimal expert-Al interaction b Computer-automated creation of standardized c
volumes is also possible and promising.
Since expert validation and correction are necessa
of optimal expert-AI interaction becomes important
Tumor growth modelling is an inter and evaluation.

- AI auto-segmentation in RT planning requires expert validation and correction 3) Expert-AI Interaction: Interactive Models & Workflows
• AI auto-segmentation in RT planning requires
expert validation and correction
-

Important for the practical use of deep learning models:

- Design of AI-expert interaction
- Interactive deep learning models and workflows with the ability for adjustment and correction