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Agenda: Al-assisted Target Volume Definition

Al-assisted target volume definition in radiation therapy?

1) Deep learning tumor auto-segmentation

2) Automated CTV creation
3) Al-interactive target volume creation

4) Tumor growth &
tumor infiltration prediction
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1) Deep learning tumor auto-segmentation

Deep learning brain tumor auto-segmentation:

* 3D U-Nets demonstrate high accuracy for automatic
tumor segmentation in multimodal 3D imaging data.

» Differentiation between different tumor compartments \ classes
(e.g., necrosis, edema, contrast-enhancing tumor)

* Accuracy within the range of inter-expert variability (Menze 2014)
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1) Deep learning tumor auto-segmentation

Clinical benefit of Al tumor auto-contouring as a support system:

n =5 brain metastases, n = 3 meningiomas, n = 2 vestibular schwannomas

Improved detection rate: 91.3% VvsS. 82.6%, p = 0.030
Improved inter-expert variability: Dice Score 0.90 vs. 0.86
Improved contouring accuracy: Dice Score 0.865 vs. 0.847
Time savings of 30.8%
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Randomized multi-reader evaluation of automated
detection and segmentation of brain tumors in
stereotactic radiosurgery with deep neural networks
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2) CTV (Clinical Target Volume) autodelineation

Automated CTV creation

/\

Anatomically-defined CTVs Rule-based CTVs
e.qg., lymph node levels e.qg., glioma




WEISSMANN T, [...] AND Putz F. FRONT. ONCOL. 2023

2) CTV auto-delineation: Anatomically-defined CTVs

Example: H&N-lymph node target volumes: Expert P;emlgl}gdr?ulsrtle%
* NnU-net 2d/3d ensemble E@rrim;n =l ____Dsepas
- Equivalence: O
Al vs. expert target volumes g ; i
in blinded evaluation Z =
e Accuracy of Al target volumes  £°* 2

0.00—— 65

within intra-observer variability

& frontiers | Frontiers in Oncology Original Research
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Anatomically-defined CTVs Deep learming for automatc head
can be automated erperteielconiaey
at human-comparable

level using U-Nets.
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2) CTV auto-delineation: Rule-based CTVs

Guideline-based RT target volume definition in gliomas (ESTRO-EANO / RTOG-NRG)
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e Solution: Automated CTV creation with shortest path algorithms
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2) CTV auto-delineation: Rule-based CTVs

Automated CTV creation with "shortest path" algorithms:

* Principle: Calculation of distance transform (3D Map of shortest path lengths)
starting from tumor (GTV) surface
considering anatomical barriers

* Prerequisite: Binary map of obstacles / barriers

= Adjustable CTV margins through thresholding specific isodistance surfaces
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3) Expert-Al Interaction: Interactive Models & Workflows

Integration of human experts into Al workflows: EXpEI‘t
Example of an interactive Al-assisted workflow for brain metastases:
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4) Tumor growth & tumor infiltration prediction
1. Prediction of tumor infiltration using reaction-diffusion models:
Challenge: Inverse problem of model calibration

for individual patients? % =V - (DVu) + pu(l — u)

Calculated tumor cell density: | R |

Calculated with GLIOMASOLVER
Lipkova et al. IEEE TMI (2019).
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4) Tumor growth & tumor infiltration prediction

1. Prediction of tumor infiltration using reaction-diffusion models:

Lipkova et al. (2019): Early clinical evaluation (retrospectiv, n = 8 patients)

Model calibration: Bayesian modelling

Alternative: 3D-CNN in atlas space

Al-target volumes smaller than
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4) Tumor growth & tumor infiltration prediction

2. Tumor growth prediction using deep learning models (,,data-driven®):
e.g., Continous-Time Deep Glioma Growth (Petersen, MICCAIl 2021)

* Hybrid-CNN Transformer — N
(Neural Process variant) E } _____ >

* Learns tumor growth prediction from . T*
longitudinal training dataset: T I

- .2
Variable number + timing of MRI scans, | | . ) . ﬂ
. . L. . = . i mubreotion TR —
variable prediction into the future -— "
e =
Continuous-Time Deep Glioma Growth Models - - -
_/_@ S ¥,

- = [ConcatCoords, Conv, LeakyRelLU, Conv, LeakyRelU]

Jens Petersen®, Fabian Isensee?, Gregor Kohler! Paul F. Jiger®, David :
) A = Bilinear Upsampling (2x)

Zimmerer®, Ulf Neuberger?, Wolfgang Wick®®, Jiirgen Debus”®?, Sabine
Heiland*, Martin Bendszus®*, Philipp Vollmuth*, and Klaus H. Maier-Hein!

¥ = Average Pooling (1/2x)
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Summary & Conclusions

* Deep learning auto-segmentation models can
improve tumor contouring as support systems.

 Computer-automated creation of standardized clinical target
volumes is also possible and promising.

* Since expert validation and correction are necessary, the question
of optimal expert-Al interaction becomes important.

* Tumor growth modelling is an interesting
future technology, but requires further
close-to-the-clinic development
and evaluation.
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3) Expert-Al Interaction: Interactive Models & Workflows

* Al auto-segmentation in RT planning requires
expert validation and correction

 Manual correction time consuming und pot. error-prone

Conventional expert interaction:

Deep Learning auto-segmentation Manual expert correction

Interactive workflow:

Deep Learning auto-segmentation

= Important for the practical use of deep learning models:
* Design of Al-expert interaction

* |Interactive deep learning models and workflows
with the ability for adjustment and correction




