Al-assisted target volume definition in radiation therapy

PD Dr. med. habil. Florian Putz

Agenda: AI-assisted Target Volume Definition

- Al-assisted target volume definition in radiation therapy?
- 1) Deep learning tumor auto-segmentation
- 2) Automated CTV creation
- 3) Al-interactive target volume creation
- 4) Tumor growth & tumor infiltration prediction

ISENSEE BRAINLES 2020, NATURE METHODS 2020, MENZE TMI 2014, BERKLEY MEDPHYS 2023

1) Deep learning tumor auto-segmentation

Deep learning brain tumor auto-segmentation:

- **3D U-Nets** demonstrate **high accuracy** for **automatic tumor segmentation** in **multimodal 3D imaging data**.
- Differentiation between different tumor compartments \ classes (e.g., necrosis, edema, contrast-enhancing tumor)
- Accuracy within the range of inter-expert variability (Menze 2014)
- Generalization to MRI data from external institutions

MEDICAL PHYSICS The International Journal of Medical Physics Research and Practice

RESEARCH ARTICLE

Clinical capability of modern brain tumor segmentation models

Adam Berkley, Camillo Saueressig, Utkarsh Shukla, Imran Chowdhury, Anthony Munoz-Gauna, Olalekan Shehu, Ritambhara Singh 🔀 Reshma Munbodh 🔀

First published: 27 February 2023 | https://doi.org/10.1002/mp.16321

1) Deep learning tumor auto-segmentation

Clinical benefit of AI tumor auto-contouring as a support system:

n = 5 brain metastases, n = 3 meningiomas, n = 2 vestibular schwannomas

- Improved detection rate: 91.3% ∨s. 82.6%, *p* = 0.030
- Improved inter-expert variability: Dice Score 0.90 vs. 0.86
- Improved contouring accuracy: Dice Score 0.865 vs. 0.847
- <u>Time savings</u> of **30.8%**

Neuro-Oncology

23(9), 1560–1568, 2021 | doi:10.1093/neuonc/noab071 | Advance Access date 22 March 2021

Randomized multi-reader evaluation of automated detection and segmentation of brain tumors in stereotactic radiosurgery with deep neural networks

Shao-Lun Lu,[†]• Fu-Ren Xiao,[†] Jason Chia-Hsien Cheng, Wen-Chi Yang, Yueh-Hung Cheng, Yu-Cheng Chang, Jhih-Yuan Lin, Chih-Hung Liang, Jen-Tang Lu, Ya-Fang Chen, and Feng-Ming Hsu[●]

2) CTV (Clinical Target Volume) autodelineation

Automated CTV creation

Anatomically-defined CTVs

e.g., lymph node levels

Rule-based CTVs e.g., glioma

WEISSMANN T, [...] AND PUTZ F. FRONT. ONCOL. 2023

2) CTV auto-delineation: Anatomically-defined CTVs

Example: H&N-lymph node target volumes:

- NnU-net 2d/3d ensemble
- Equivalence: Al vs. expert target volumes

- in **blinded evaluation**
- Accuracy of AI target volumes within intra-observer variability

Anatomically-defined CTVs can be automated at human-comparable level using U-Nets.

Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy

TYPE Original Research PUBLISHED 16 February 2023 DOI 10.3389/fonc.2023.1115258

Frontiers | Frontiers in Oncology

Thomas Weissmann¹², Yixing Huang¹², Stefan Fischer¹², Johannes Roesch¹², Sina Mansoorian¹², Horacio Ayala Gaona¹², Antoniu-Oreste Gostian²³, Markus Hecht¹², Sebastian Lettmaier¹², Lisa Deloch¹²⁴, Benjamin Frey¹²⁴, Udo S. Gaipl¹²⁴, Luitpold Valentin Distel¹², Andreas Maier⁵, Heinrich Iro²³, Sabine Semrau¹², Christoph Bert¹², Rainer Fietkau¹² and Florian Putz ¹² Expert Deep learning + contours adjusted to slice plane

2) CTV auto-delineation: Rule-based CTVs

Guideline-based RT target volume definition in gliomas (ESTRO-EANO / RTOG-NRG)

• **<u>Principle</u>**: Tumor expansion (15 – 20 mm) but **considering anatomical barriers**

• <u>Solution</u>: Automated CTV creation with shortest path algorithms

2) CTV auto-delineation: Rule-based CTVs

Automated CTV creation with "shortest path" algorithms:

- Principle: Calculation of distance transform (3D Map of shortest path lengths) starting from tumor (GTV) surface considering anatomical barriers
- **Prerequisite:** Binary map of obstacles / barriers

Adjustable CTV margins through thresholding specific isodistance surfaces

PUTZ F. ET AL. ESTRO 2023

3) Expert-Al Interaction: Interactive Models & Workflows

<u>4) Tumor growth & tumor infiltration prediction</u>

1. Prediction of tumor infiltration using reaction-diffusion models:

<u>Challenge:</u> Inverse problem of model calibration for individual patients?

$$rac{\partial \mathbf{u}}{\partial t} =
abla \cdot (\mathbb{D}
abla \mathbf{u}) +
ho \mathbf{u} (1 - \mathbf{u})$$

LIPKOVA ET AL. IEEE TMI 2019, METZ, EZHOV, PEEKEN, [...], WIESTLER NEURO ONCOL ADVANCES 2024 **4) Tumor growth & tumor infiltration prediction**

- 1. <u>Prediction of tumor infiltration using reaction-diffusion models:</u> <u>Lipkova et al. (2019):</u> Early clinical evaluation (retrospectiv, n = 8 patients)
 - <u>Model calibration</u>: Bayesian modelling <u>Alternative</u>: 3D-CNN in atlas space (Learn-Morph-Infer)
 - Al-target volumes smaller than RTOG-target volumes while having same coverage of recurrences.

PETERSEN ET AL. MICCAI 2021

4) Tumor growth & tumor infiltration prediction

- 2. <u>Tumor growth prediction using deep learning models ("data-driven"):</u> e.g., Continous-Time Deep Glioma Growth (Petersen, MICCAI 2021)
- Hybrid-CNN Transformer (Neural Process variant)
- Learns tumor growth prediction from longitudinal training dataset: Variable number + timing of MRI scans, variable prediction into the future

Continuous-Time Deep Glioma Growth Models

Jens Petersen¹, Fabian Isensee², Gregor Köhler¹ Paul F. Jäger³, David Zimmerer¹, Ulf Neuberger⁴, Wolfgang Wick^{5,6}, Jürgen Debus^{7,8,9}, Sabine Heiland⁴, Martin Bendszus⁴, Philipp Vollmuth⁴, and Klaus H. Maier-Hein¹

Summary & Conclusions

- Deep learning auto-segmentation models can improve tumor contouring as support systems.
- Computer-automated creation of standardized clinical target volumes is also possible and promising.
- Since expert validation and correction are necessary, the question of optimal expert-Al interaction becomes important.
- Tumor growth modelling is an interesting future technology, but requires further close-to-the-clinic development and evaluation.

3) Expert-Al Interaction: Interactive Models & Workflows

- Al auto-segmentation in RT planning requires expert validation and correction
- Manual correction time consuming und pot. error-prone

⇒ Important for the practical use of deep learning models:

- Design of Al-expert interaction
- Interactive deep learning models and workflows with the ability for adjustment and correction