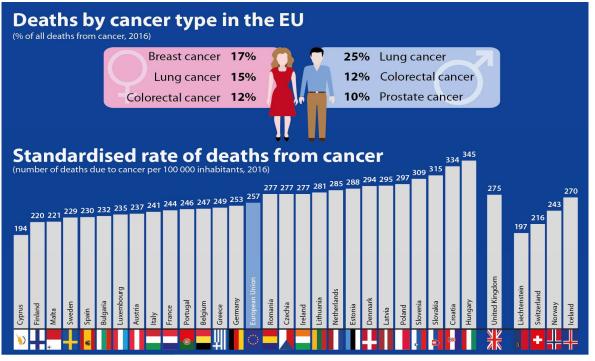


Al applications in radiation oncology-The role of the FAIR data principles

Dr. Petros Kalendralis


Senior researcher-Medical Physicist

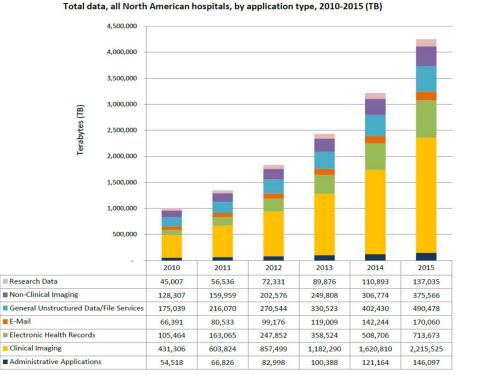
Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands

Cancer in the EU

Maastro
Maastricht University
Maastricht UMC+

ec.europa.eu/eurostat

https://ec.europa.eu/eurostat/web/products-eurostat-news/-/edn-20200204-1


Big data in cancer

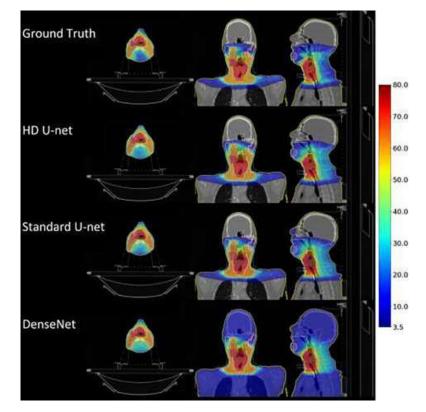
Maastro
Maastricht University
Maastricht UMC+

Oncology 2005-2015 140M patients 0.1-10GB per patient

14-1400PB 80% unstructured

Hospitals China: 25.000 India: 35.000 Germany: 2.000 France: 2.300 Italy: 1.100 USA: 5.500 Australia: 1.400 TOTAL ~100.000

Source: Enterprise Strategy Group, 2011.

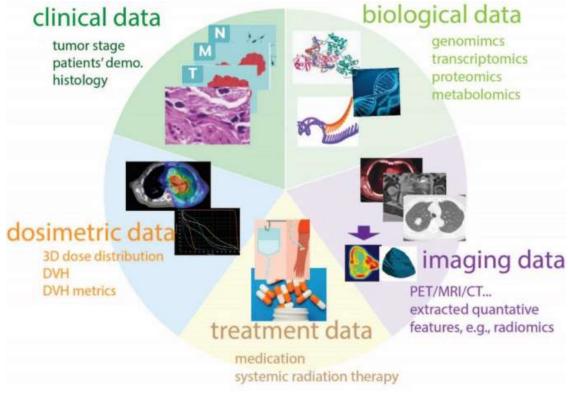


Maastro
Maastricht University
Maastricht UMC+

• Treatment planning

Clinical

Data Science


https://doi.org/10.1016/j.semradonc.2022.06.004

Al in radiation oncology-Overview

Maastro
Maastricht University
Maastricht UMC+

• Prediction modelling of radiotherapy related outcomes

https://doi.org/10.1016/j.semradonc.2022.06.005

Al in radiation oncology-Overview

Maastro
Maastricht University
Maastricht UMC+

Imaging based predictions

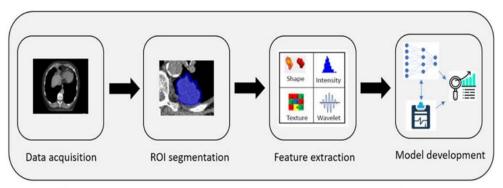


FIG. 4.1 Representation of the typical radiomics work containing the data acquisition, the ROI segmentation, the feature extraction and the statistical analysis for model development.

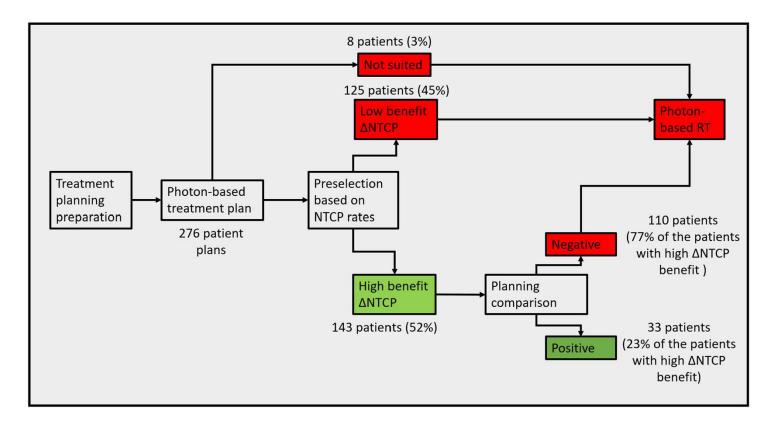
https://doi.org/10.1016/B978-0-12-822000-9.00009-4

Annun

AI based model selection for proton therapy-Head and neck cancer

Maastro

Maastricht University


Maastricht UMC+

1.0 Calibration curves of the four different NTCP models developed according to the CTP 0.8 100 % 75 % 0.6 **Observed Probability** AUC: 0.800 (0.746-0.853) 50 % AUC: 0.828 (0.778-0.879) 0.4 Original model Re-calibration in the large Logistic Recalibration 25 % Model Revision 0.2 0% 0% 25 % 50 % 100 % 75 % 0.0 Original Model, Re-calibration in the large, Recalibration
 Revised model Predicted probability 1.0 0.8 0.6 0.4 0.2 0.0 Specificity

DOI: 10.1016/j.phro.2022.09.005

AI based model selection for proton therapy-Head and neck cancer

Maastro Maastricht University

W Maastricht UMC+

Quality assurance in radiotherapy treatment planning

Clinical

Data Science Maastro
Maastricht University
Maastricht UMC+

ROC M stage Natage Tstage 1.0 0.8 0.6 Sensitivity Diagnostic Patient set-up Treatment planning 0.4 Dose presciription MU per Degree 0.2 UW (AUC:80.5%) ---Maastro (AUC:76.4%) UVM (AUC:84.4%) -----0.0 1.0 0.5 0.0 Specificity

> https://pubmed.ncbi.nlm.nih.gov/ 36925935/

Data

Quality assurance in radiotherapy treatment planning

Maastro Maastricht University W Maastricht UMC+

Trained -> Tested Variable	Maas -> UVMMC	Maas -> UVMMC	UW -> Maas	UW -> UWM	UVMMC ->Maas	UVMMC ->UW
Beam Energy	52.1	54	71.6	62	79.5	54.5
Bolus		52.7	72.1	-	72	54.2
Collimator Angle	82	64.3	88.4	84.8	95.2	88.8
Dose Per Fraction	58	73.9	61.3	62.3	74.6	74.3
Gantry Angle	56.9	61.6	67.9	81.3	84.5	72.5
MU Per cGy	57.5	41.7	72.6	89.7	69.6	76.4
MU Per Deg	48.9	42.9	85.8	95.7	58.6	91.1
Number of Beams	40.2	31.3	55.3	82.8	70.1	65.5
Number of Fractions	55.9	57.3	63.9	57	61.1	69.9
PTV Dose Rx	59.9	69	56.5	76.5	44.8	74
Radiation Type	79.5	66.9	74.1	97	68.3	78.7
SSD	69.3	67	78.1	70.8	59.6	90.2
Table Angle	67.1	77.4	98	91.2	99.6	96.1
Overall	63.8	58.5	67.6	84.8	64.2	75.3

-, Not applicable.

https://pubmed.ncbi.nlm.nih.gov/36925935/

How is AI changing the paradigm of healthcare delivery

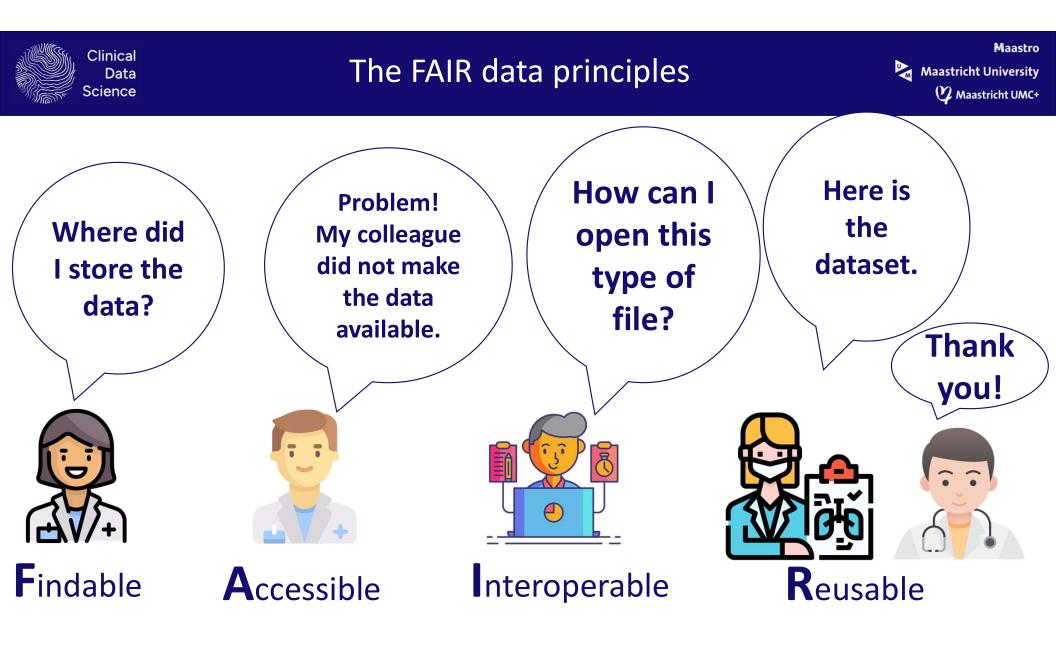
Maastro
Maastricht University
Maastricht UMC+

Transformational Impact:

- **Improved Diagnostics:** AI enables more accurate and timely diagnostics through image analysis and pattern recognition.
- **Personalized Treatment Plans:** Tailoring treatment strategies based on individual patient data.
- **Predictive Analytics:** Forecasting disease outbreaks and patient-specific health risks.

Automation and Efficiency:

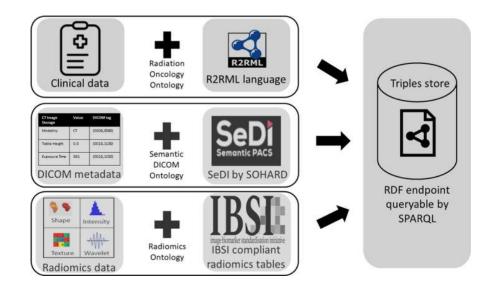
- Task Automation: AI can handle routine tasks, allowing healthcare professionals to focus on complex cases.
- **Streamlined Processes:** AI-driven algorithms optimize hospital workflows and resource allocation



Challenges:

- Ethical Concerns: Addressing issues related to biased algorithms and transparency.
- Integration Challenges: Incorporating AI into existing healthcare systems.
- Data sharing problems: Usually data transfer agreements take time

FAIR data transformation


Maastro
Maastricht University
Maastricht UMC+

> Med Phys. 2020 Nov;47(11):5931-5940. doi: 10.1002/mp.14322. Epub 2020 Jun 27.

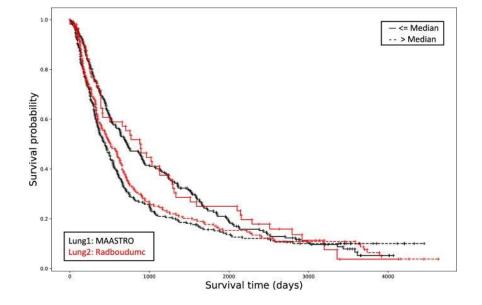
FAIR-compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head-Neck1 TCIA collections

Petros Kalendralis ¹, Zhenwei Shi ¹, Alberto Traverso ¹, Ananya Choudhury ¹, Matthijs Sloep ¹, Ivan Zhovannik ^{1 2}, Martijn P A Starmans ^{3 4}, Detlef Grittner ⁵, Peter Feltens ⁵, Rene Monshouwer ², Stefan Klein ^{3 4}, Rianne Fijten ¹, Hugo Aerts ^{6 7}, Andre Dekker ¹, Johan van Soest ¹, Leonard Wee ¹

Affiliations + expand PMID: 32521049 PMCID: PMC7754296 DOI: 10.1002/mp.14322

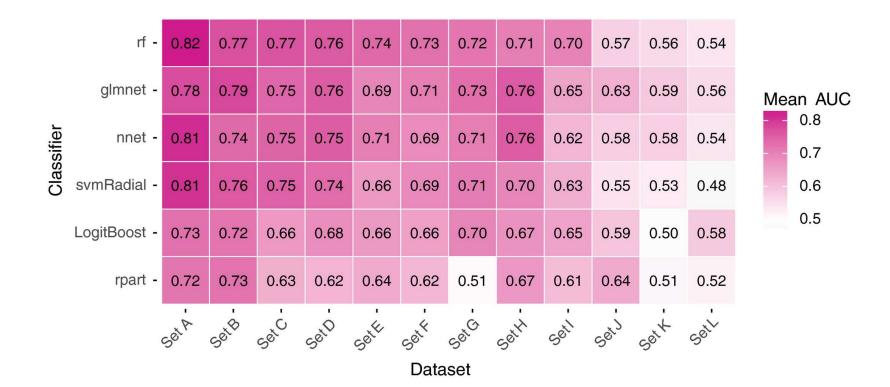
Radiomics FAIR study example

Maastro
Maastricht University
Maastricht UMC+


> Sci Data. 2019 Oct 22;6(1):218. doi: 10.1038/s41597-019-0241-0.

Clinical

Data Science


Distributed radiomics as a signature validation study using the Personal Health Train infrastructure

Data quality matters

https://doi.org/10.1002/mp.12967

Maastro Maastricht University Maastricht UMC+

Take home messages

- We need AI for higher efficiency in cancer care
- FAIR federated data are quickly becoming the new standard
- Significant challenges
- -Trust
- -FAIR data transformation
- -Legal documentation time needed
- -Political barriers across the hospitals

Acknowledgements

Maastro Maastricht University

Netherlands

- MAASTRO, Maastricht, Netherlands
- Radboudumc, Nijmegen, Netherlands
- Erasmus MC, Rotterdam, Netherlands
- Leiden UMC, Leiden, Netherlands
- Catharina Hospital, Eindhoven, Netherlands
- Isala Hospital, Zwolle, Netherlands
- NKI Amsterdam, Netherlands
- UMCG, Groningen, Netherlands
- IKNL, Utrecht, Netherlands

Europe

- · Policlinico Gemelli & UCSC, Roma, Italy
- UH Ghent, Belgium
- UZ Leuven, Belgium
- Cardiff University & Velindre CC, Cardiff, UK
- CHU Liege, Belgium
- Uniklinikum Aachen, Germany
- LOC Genk/Hasselt, Belgium
- The Christie, Manchester, UK
- State Hospital, Rovigo, Italy
- St James Institute of Oncology, Leeds, UK
- U of Southern Denmark, Odense, Denmark
- Greater Poland Cancer Center, Poznan, Poland
- Oslo University Hospital, Oslo, Norway

Africa

• University of the Free State, Bloemfontein, South Africa

Asia

- Fudan Cancer Center, Shanghai, China
- CDAC, Pune, India

- Tata Memorial, Mumbai, India
- Suining Central Hospital, Suining, China
- HGC Oncology, Bangalore, India

North America

- RTOG, Philadelphia, PA, USA
- MGH, Boston, MA, USA
- University of Michigan, Ann Arbor, USA
- Princess Margaret CC, Canada

South America

Albert Einstein, Sao Paulo, Brazil

Australia

- University of Sydney, Australia
- Westmead Hospital, Sydney, Australia
- Liverpool and Macarthur CC, Australia
- ICCC, Wollongong Australia
- Calvary Mater, Newcastle, Australia
- North Coast Cancer Institute, Coffs Harbour, Australia

Industry

- Varian, Palo Alto, CA, USA
- Philips, Bangalore, India
- Sohard GmbH, Fuerth, Germany
- Microsoft, Hyderabad, India
- Mirada Medical, Oxford, UK
- CZ Health Insurance, Tilburg, NL
- Siemens, Malvern, PA, USA
- Roche, Woerden, NL

Medical Data Works, Heerlen, NL

